These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. Author: Zou F, Hu X, Qie L, Jiang Y, Xiong X, Qiao Y, Huang Y. Journal: Nanoscale; 2014 Jan 21; 6(2):924-30. PubMed ID: 24280782. Abstract: Traditional metal anode materials in lithium-ion batteries are plagued by instability upon discharge-charge cycling. We report that a unique sandwiched Zn2GeO4-graphene oxide nanocomposite has been synthesized on a large scale through a simple ion-exchange reaction, whereby Zn2GeO4 nanorods with lengths of 600 nm and widths of 40 nm are homogeneously sandwiched into the graphene oxide matrix. Compared with bare Zn2GeO4 nanorods, a dramatic improvement in the electrochemical performance of the resulting nanocomposite has been achieved. In the voltage window of 0.001-3 V, the electrode of the Zn2GeO4-graphene oxide nanocomposite delivers a specific capacity as high as 1150 mA h g(-1) at 200 mA g(-1) after 100 discharge-charge cycles. Even at a high current density of 3.2 A g(-1), a capacity of 522 mA h g(-1) can be retained. The unusual electrochemical performance including highly reversible capacity and excellent rate capability arise from synergetic chemical coupling effects between Zn2GeO4 and graphene oxide.[Abstract] [Full Text] [Related] [New Search]