These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determining 'age at death' for forensic purposes using human bone by a laboratory-based biomechanical analytical method.
    Author: Zioupos P, Williams A, Christodoulou G, Giles R.
    Journal: J Mech Behav Biomed Mater; 2014 May; 33():109-23. PubMed ID: 24286969.
    Abstract:
    Determination of age-at-death (AAD) is an important and frequent requirement in contemporary forensic science and in the reconstruction of past populations and societies from their remains. Its estimation is relatively straightforward and accurate (±3yr) for immature skeletons by using morphological features and reference tables within the context of forensic anthropology. However, after skeletal maturity (>35yr) estimates become inaccurate, particularly in the legal context. In line with the general migration of all the forensic sciences from reliance upon empirical criteria to those which are more evidence-based, AAD determination should rely more-and-more upon more quantitative methods. We explore here whether well-known changes in the biomechanical properties of bone and the properties of bone matrix, which have been seen to change with age even after skeletal maturity in a traceable manner, can be used to provide a reliable estimate of AAD. This method charts a combination of physical characteristics some of which are measured at a macroscopic level (wet & dry apparent density, porosity, organic/mineral/water fractions, collagen thermal degradation properties, ash content) and others at the microscopic level (Ca/P ratios, osteonal and matrix microhardness, image analysis of sections). This method produced successful age estimates on a cohort of 12 donors of age 53-85yr (7 male, 5 female), where the age of the individual could be approximated within less than ±1yr. This represents a vastly improved level of accuracy than currently extant age estimation techniques. It also presents: (1) a greater level of reliability and objectivity as the results are not dependent on the experience and expertise of the observer, as is so often the case in forensic skeletal age estimation methods; (2) it is purely laboratory-based analytical technique which can be carried out by someone with technical skills and not the specialised forensic anthropology experience; (3) it can be applied worldwide following stringent laboratory protocols. As such, this technique contributes significantly to improving age estimation and therefore identification methods for forensic and other purposes.
    [Abstract] [Full Text] [Related] [New Search]