These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Pasteurella multocida sialyltransferase displaying dual trans-sialidase activities for production of 3'-sialyl and 6'-sialyl glycans.
    Author: Guo Y, Jers C, Meyer AS, Arnous A, Li H, Kirpekar F, Mikkelsen JD.
    Journal: J Biotechnol; 2014 Jan 20; 170():60-7. PubMed ID: 24291191.
    Abstract:
    This study examined a recombinant Pasteurella multocida sialyltransferase exhibiting dual trans-sialidase activities. The enzyme catalyzed trans-sialylation using either 2-O-(p-nitrophenyl)-α-d-N-acetylneuraminic acid or casein glycomacropeptide (whey protein) as the sialyl donor and lactose as the acceptor, resulting in production of both 3'-sialyllactose and 6'-sialyllactose. This is the first study reporting α-2,6-trans-sialidase activity of this sialyltransferase (EC 2.4.99.1 and 2.4.99.4). A response surface design was used to evaluate the effects of three reaction parameters (pH, temperature, and lactose concentration) on enzymatic production of 3'- and 6'-sialyllactoses using 5% (w/v) casein glycomacropeptide (equivalent to 9mM bound sialic acid) as the donor. The maximum yield of 3'-sialyllactose (2.75±0.35mM) was achieved at a reaction condition with pH 6.4, 40°C, 100mM lactose after 6h; and the largest concentration of 6'-sialyllactose (3.33±0.38mM) was achieved under a condition with pH 5.4, 40°C, 100mM lactose after 8h. 6'-sialyllactose was presumably formed from α-2,3 bound sialic acid in the casein glycomacropeptide as well as from 3'-sialyllactose produced in the reaction. The kcat/Km value for the enzyme using 3'-sialyllactose as the donor for 6'-sialyllactose synthesis at pH 5.4 and 40°C was determined to be 23.22±0.7M(-1)s(-1). Moreover, the enzyme was capable of catalyzing the synthesis of both 3'- and 6'-sialylated galactooligosaccharides, when galactooligosaccharides served as acceptors.
    [Abstract] [Full Text] [Related] [New Search]