These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Downregulation of NO and PGE2 in LPS-stimulated BV2 microglial cells by trans-isoferulic acid via suppression of PI3K/Akt-dependent NF-κB and activation of Nrf2-mediated HO-1. Author: Dilshara MG, Lee KT, Jayasooriya RG, Kang CH, Park SR, Choi YH, Choi IW, Hyun JW, Chang WY, Kim YS, Lee HJ, Kim GY. Journal: Int Immunopharmacol; 2014 Jan; 18(1):203-11. PubMed ID: 24291391. Abstract: Little is known about whether trans-isoferulic acid (TIA) regulates the production of lipopolysaccharide (LPS)-induced proinflammatory mediators. Therefore, we examined the effect of TIA isolated from Clematis mandshurica on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in BV2 microglial cells. We found that TIA inhibited the production of LPS-induced NO and PGE2 without accompanying cytotoxicity in BV2 microglial cells. TIA also downregulated the expression levels of specific regulatory genes such as inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) by suppressing LPS-induced NF-κB activity via dephosphorylation of PI3K/Akt. In addition, we demonstrated that a specific NF-κB inhibitor PDTC and a selective PI3K/Akt inhibitor, LY294002 effectively attenuated the expression of LPS-stimulated iNOS and COX-2 mRNA, while LY294002 suppressed LPS-induced NF-κB activity, suggesting that TIA attenuates the expression of these proinflammatory genes by suppressing PI3K/Akt-mediated NF-κB activity. Our results showed that TIA suppressed NO and PGE2 production through the induction of nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent heme oxygenase-1 (HO-1). Taken together, our data indicate that TIA suppresses the production of proinflammatory mediators such as NO and PGE2, as well as their regulatory genes, in LPS-stimulated BV2 microglial cells, by inhibiting PI3K/Akt-dependent NF-κB activity and enhancing Nrf2-mediated HO-1 expression.[Abstract] [Full Text] [Related] [New Search]