These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dead-end complexes contribute to the synergistic inhibition of HIV-1 RT by the combination of rilpivirine, emtricitabine, and tenofovir. Author: Kulkarni R, Feng JY, Miller MD, White KL. Journal: Antiviral Res; 2014 Jan; 101():131-5. PubMed ID: 24291780. Abstract: The single tablet regimen of the nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) tenofovir disoproxil fumarate (TDF), emtricitabine (FTC), and the non-nucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) is approved for the treatment of HIV-1 infection in treatment-naïve adults. Previous studies have shown that two-drug combinations of these drugs show additive to synergistic HIV-1 antiviral activity in cell culture. In this study, two-drug combinations of tenofovir (TFV)+FTC, RPV+TFV, and RPV+FTC inhibited HIV-1 replication in cell culture with strong synergy and no evidence of antagonism. The triple drug combination of RPV+FTC+TFV displayed moderate synergy comparable to efavirenz (EFV)+FTC+TFV. The formation of dead-end complexes (DEC) of HIV-1 reverse transcriptase (RT), NRTI chain-terminated primer/template, and the next complementary nucleotide or NNRTIs was studied using gel mobility shift assays. DEC formation was seen with TFV-terminated DNA primer/template, HIV-1 RT, and FTC-triphosphate (TP) in addition to the natural nucleotide dCTP, thus stabilizing chain-termination. The NNRTI RPV also formed DEC-like complexes with TFV- and FTC-monophosphate (MP)-terminated DNA primer/templates and HIV-1 RT, and stabilized chain-termination by both NRTIs. Overall, the combinations of RPV, FTC, and TFV inhibit HIV-1 replication with moderate to strong synergy. This may be partially explained by enhanced DEC formation of NRTI chain-terminated DNA primer/template and HIV-1 RT in the presence of the other drugs in the combination, leading to more stable chain-termination and replication inhibition by NRTIs.[Abstract] [Full Text] [Related] [New Search]