These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NMR study of short β(1-3)-glucans provides insights into the structure and interaction with Dectin-1.
    Author: Hanashima S, Ikeda A, Tanaka H, Adachi Y, Ohno N, Takahashi T, Yamaguchi Y.
    Journal: Glycoconj J; 2014 Apr; 31(3):199-207. PubMed ID: 24293021.
    Abstract:
    β(1-3)-Glucans, abundant in fungi, have the potential to activate the innate immune response against various pathogens. Although part of the action is exerted through the C-type lectin-like receptor Dectin-1, details of the interaction mechanism with respect to glucan chain-length remain unclear. In this study, we investigated a set of short β(1-3)-glucans with varying degree of polymerization (DP); 3, 6, 7, 16, and laminarin (average DP; 25), analyzing the relationship between the structure and interaction with the C-type lectin-like domain (CTLD) of Dectin-1. The interaction of short β(1-3)-glucans (DP6, DP16, and laminarin) with the CTLD of Dectin-1 was systematically analyzed by (1)H-NMR titration as well as by saturation transfer difference (STD)-NMR. The domain interacted weakly with DP6, moderately with DP16 and strongly with laminarin, the latter plausibly forming oligomeric protein-laminarin complexes. To obtain structural insights of short β(1-3)-glucans, the exchange rates of hydroxy protons were analyzed by deuterium induced (13)C-NMR isotope shifts. The hydroxy proton at C4 of laminarin has slower exchange with the solvent than those of DP7 and DP16, suggesting that laminarin has a secondary structure. Diffusion ordered spectroscopy revealed that none of the short β(1-3)-glucans including laminarin forms a double or triple helix in water. Insights into the interaction of the short β(1-3)-glucans with Dectin-1 CTLD provide a basis to understand the molecular mechanisms of β-glucan recognition and cellular activation by Dectin-1.
    [Abstract] [Full Text] [Related] [New Search]