These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changes in DXA and quantitative CT measures of musculoskeletal outcomes following pediatric renal transplantation. Author: Tsampalieros A, Griffin L, Terpstra AM, Kalkwarf HJ, Shults J, Foster BJ, Zemel BS, Foerster DL, Leonard MB. Journal: Am J Transplant; 2014 Jan; 14(1):124-32. PubMed ID: 24298998. Abstract: This prospective study evaluated changes in dual energy X-ray absorptiometry (DXA) whole body bone mineral content (WB-BMC) and spine areal bone mineral density (spine-BMD), and tibia quantitative computed tomography (QCT) trabecular and cortical volumetric BMD and cortical area in 56 children over 12 months following renal transplantation. At transplant, spine-BMD Z-scores were greater in younger recipients (<13 years), versus 898 reference participants (p < 0.001). In multivariate models, greater decreases in spine-BMD Z-scores were associated with greater glucocorticoid dose (p < 0.001) and declines in parathyroid hormone levels (p = 0.008). Changes in DXA spine-BMD and QCT trabecular BMD were correlated (r = 0.47, p < 0.01). At 12 months, spine-BMD Z-scores remained elevated in younger recipients, but did not differ in older recipients (≥ 13) and reference participants. Baseline WB-BMC Z-scores were significantly lower than reference participants (p = 0.02). Greater glucocorticoid doses were associated with declines in WB-BMC Z-scores (p < 0.001) while greater linear growth was associated with gains in WB-BMC Z-scores (p = 0.01). Changes in WB-BMC Z-scores were associated with changes in tibia cortical area Z-scores (r = 0.52, p < 0.001), but not changes in cortical BMD Z-scores. Despite resolution of muscle deficits, WB-BMC Z-scores at 12 months remained significantly reduced. These data suggest that spine and WB DXA provides insight into trabecular and cortical outcomes following pediatric renal transplantation.[Abstract] [Full Text] [Related] [New Search]