These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of Cd, Zn and Hg complexes of barbituric acid and thiouracil on rat brain monoamine oxidase-B (in vitro).
    Author: Shaban NZ, Masoud MS, Awad D, Mawlawi MA, Sadek OM.
    Journal: Chem Biol Interact; 2014 Feb 05; 208():37-46. PubMed ID: 24300193.
    Abstract:
    Metal pyrimidine complexes (MPCs) including cadmium-barbiturate (Cd-BA), zinc-barbiturate (Zn-BA), cadmium-thiouracil (Cd-TU) and mercury-thiouracil (Hg-TU) were prepared and their analysis was carried out. These MPCs were evaluated as monoamine oxidase-B (MAO-B) inhibitors. Rat brain MAO-B was inhibited (in vitro) by Cd-BA, Zn-BA, Cd-TU and Hg-TU complexes. The inhibition of MAO-B by these complexes was time and concentration dependent. The values of IC50 of Zn-BA, Cd-BA, Hg-TU and Cd-TU were 10.2, 15.8, 16.2 and 20.4 nM, respectively. The effect of different substrate concentrations in the absence and in the presence of MPCs was determined. Lineweaver-Burk plots were plotted and the values of apparent Michaelis constant (Km), maximum velocity (Vmax), the dissociation constant of enzyme inhibitor complex (Ki) and the percent of inhibition (i%) were calculated. The data showed that the inhibition of MAO-B by all studied MPCs was the non-competitive type. The sequence of inhibition zone was: Zn-BA>Cd-BA and Hg-TU>Cd-TU affected by the chemistry of both the metal and the ligand. Otherwise, the results of the present study showed that the inhibition of MAO-B by all MPCs was fully reversible. The data showed that the presence of Cd-BA, Zn-BA, Cd-TU and Hg-TU complexes changed the optimum temperature and pH of MAO-B.
    [Abstract] [Full Text] [Related] [New Search]