These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of the alpha-2 agonist oxaminozoline (S3341) on firing rate of central noradrenergic and serotonergic neurons in the rat. Comparison with clonidine. Author: Dresse A, Scuvée-Moreau J. Journal: Arch Int Physiol Biochim; 1986 Jun; 94(2):99-106. PubMed ID: 2430542. Abstract: The firing rate of central locus coeruleus (LC) noradrenergic neurons and dorsal raphe (DR) serotonergic neurons was recorded in rats anaesthetized with chloral hydrate. The iontophoretic application or the i.v. perfusion of S3341, a new antihypertensive drug or clonidine decreased the frequency of discharge of LC neurons. Depending on the mode of administration clonidine was 54-63 times more potent than S3341. The selectivity of action of both drugs on alpha-2 vs. alpha-1 adrenoceptors was confirmed using yohimbine and prazosin: yohimbine completely blocked the inhibitory effect of S3341 or clonidine while prazosin did not prevent this effect. S3341 and clonidine regularly reduced the firing rate of DR neurons during i.v. perfusion but not during iontophoretic application. From these experiments is it concluded that S3341 and clonidine have a direct inhibitory effect on LC neurons via stimulation of alpha-2 autoreceptors and that both drugs have an indirect inhibitory effect on DR neurons, probably via impairment of noradrenergic transmission. Clinical studies show that S3341 induces much less sedative side effects than clonidine. In view of the great difference in the potency of these drugs to inhibit the firing rate of monoaminergic neurons which are known to be involved in sleep mechanisms, it is possible that the electrophysiological effects reported here relate to the sedative effects of these drugs.[Abstract] [Full Text] [Related] [New Search]