These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Overexpressed TGF-β in subchondral bone leads to mandibular condyle degradation. Author: Jiao K, Zhang M, Niu L, Yu S, Zhen G, Xian L, Yu B, Yang K, Liu P, Cao X, Wang M. Journal: J Dent Res; 2014 Feb; 93(2):140-7. PubMed ID: 24309371. Abstract: Emerging evidence has implied that subchondral bone plays an important role during osteoarthritis (OA) pathology. This study was undertaken to investigate whether abnormalities of the condylar subchondral bone lead to temporomandibular joint (TMJ) OA. We used an osteoblast-specific mutant TGF-β1 transgenic mouse, the CED mouse, in which high levels of active TGF-β1 occur in bone marrow, leading to abnormal bone remodeling. Subchondral bone changes in the mandibular condyles were investigated by micro-CT, and alterations in TMJ condyles were confirmed by histopathological and immunohistochemical analysis. Abnormalities in the condylar subchondral bone, characterized as fluctuant bone mineral density and microstructure and increased but uncoupled activity of osteoclasts and osteoblasts, were apparent in the 1- and 4-month CED mouse groups, while obvious cartilage degradation, in the form of cell-free regions and proteoglycan loss, was observed in the 4-month CED group. In addition, increased numbers of apoptotic chondrocytes and MMP9- and VEGF-positive chondrocytes were observed in the condylar cartilage in the 4-month CED group, but not in the 1-month CED group, compared with their respective age-matched controls. This study demonstrated that progressive degradation of mandibular condylar cartilage could be induced by the abnormal remodeling of the underlying subchondral bone during TMJOA progression.[Abstract] [Full Text] [Related] [New Search]