These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transient and delayed potassium currents in the Retzius cell of the leech, Macrobdella decora. Author: Johansen J, Kleinhaus AL. Journal: J Neurophysiol; 1986 Sep; 56(3):812-22. PubMed ID: 2431112. Abstract: The properties of a quickly inactivating transient K current (IA) and a slowly inactivating delayed K current (IK) were investigated with two-electrode voltage-clamp techniques in the isolated soma of the Retzius cell of the leech, Macrobdella decora. The two currents could be pharmacologically separated according to their different sensitivities to tetraethylammonium ions (TEA) and 4-aminopyridine (4-AP). IA was totally blocked by 3 mM 4-AP but not affected by 25 mM TEA. IK was suppressed almost completely by 25 mM TEA, whereas its peak amplitude only decreased by 10-15% in 3 mM 4-AP. IA was activated at membrane potentials more positive than -35 to -30 mV, whereas the threshold for IK was at more positive potentials of approximately -20 to -15 mV. The activation of IA was rapid with a voltage-dependent time constant [tau m(A)] that varied from 6 to 2 ms for command potentials between -20 and 10 mV (at 22-24 degrees C). The inactivation, which was independent of voltage, was somewhat slower with a time constant (tau A) of approximately 90-110 ms. The time constants for activation [tau m(K)] and the early inactivation phase (tau K) of IK were both voltage dependent. In the range of potential steps from 0 to 30 mV, tau m(K) varied from 12 to 4.5 ms and tau K from 1,500 to 700 ms. The steady-state inactivation of IA varied with holding potential and was complete at potentials more positive than -30 mV. IA was fully available from potentials more negative than -70 mV. IK did not show steady-state inactivation below its threshold of activation. The time course of IA during a maintained depolarization could be reasonably described by the expression IA(t) = IA(infinity) [1-exp(-t/tau m(A))]2 exp(-t/tau A). The time course of activation of IK without allowance for inactivation was approximated by the expression IK(t) = IK(infinity) [1-exp(-t/tau m(K))]2. The reversal potentials and magnitude of both IA and IK were dependent on extra-cellular K concentration, which suggest that a substantial part of the two currents was carried by K ions.[Abstract] [Full Text] [Related] [New Search]