These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: N(2)O emissions and source processes in snow-covered soils in the Swiss Alps.
    Author: Mohn J, Steinlin C, Merbold L, Emmenegger L, Hagedorn F.
    Journal: Isotopes Environ Health Stud; 2013; 49(4):520-31. PubMed ID: 24313373.
    Abstract:
    Nitrous oxide (N2O) emissions from snow-covered soils represent a significant fraction of the annual flux from alpine, subalpine or cold-temperate regions. In winter 2010-2011, we investigated the temporal variability of N2O emissions and source processes from a subalpine valley in the Swiss Alps. The study included regular measurements of N2O snow profiles at a fixed location and an intensive sampling campaign along a transversal cut through the valley with grassland at the bottom and coniferous forest at the slopes. During the intensive campaign, recently developed laser spectroscopy was employed for high-precision N2O isotopomer analysis. Maximum N2O fluxes (0.77±0.64 nmol m(-2) h(-1)) were found for periods with elevated air temperature and, in contrast to our expectations, were higher from forest than from grassland in mid-February. At maximum snow height (63 cm) the main N2O source processes were heterotrophic denitrification and nitrifier denitrification. The reduction of N2O by heterotrophic denitrifiers was much more pronounced for the grassland compared with the forest soil, as indicated by the (15)N site preferences of 16.4±11.5 ‰ (grassland) and-1.6±2.1 ‰ (forest). This illustrates the potential of laser spectroscopic N2O isotopomer analysis for the identification of source processes even at low emission rates in nutrient poor ecosystems.
    [Abstract] [Full Text] [Related] [New Search]