These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium.
    Author: Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, Niesman IR, Patel HH, Headrick JP.
    Journal: Exp Gerontol; 2014 Feb; 50():72-81. PubMed ID: 24316036.
    Abstract:
    Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
    [Abstract] [Full Text] [Related] [New Search]