These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydraulics of high-yield orchard trees: a case study of three Malus domestica cultivars.
    Author: Beikircher B, De Cesare C, Mayr S.
    Journal: Tree Physiol; 2013 Dec; 33(12):1296-307. PubMed ID: 24319028.
    Abstract:
    The drought tolerance of three economically important apple cultivars, Golden Delicious, Braeburn and Red Delicious, was analysed. The work offers insights into the hydraulics of these high-yield trees and indicates a possible hydraulic limitation of carbon gain. The hydraulic safety and efficiency of branch xylem and leaves were quantified, drought tolerance of living tissues was measured and stomatal regulation, turgor-loss point and osmotic potential at full turgor were analysed. Physiological measurements were correlated with anatomical parameters, such as conduit diameter, cell-wall reinforcement, stomatal density and stomatal pore length. Hydraulic safety differed considerably between the three cultivars with Golden Delicious being significantly less vulnerable to drought-induced embolism than Braeburn and Red Delicious. In Golden Delicious, leaves were less resistant than branch xylem, while in the other cultivars leaves were more resistant than branch xylem. Hydraulic efficiency and xylem anatomical measurements indicate differences in pit properties, which may also be responsible for variations in hydraulic safety. In all three cultivars, full stomatal closure occurred at water potentials where turgor had already been lost and severe loss of hydraulic conductivity as well as damage to living cells had been induced. The consequential negative safety margins pose a risk for hydraulic failure but facilitate carbon gain, which is further improved by the observed high stomatal conductance. Maximal stomatal conductance was clearly seen to be related to stomatal density and size. Based on our results, these three high-yield Malus domestica Borkh. cultivars span a wide range of drought tolerances, appear optimized for maximal carbon gain and, thus, all perform best under well-managed growing conditions.
    [Abstract] [Full Text] [Related] [New Search]