These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification, subunit structure and pharmacological effects on cardiac and smooth muscle cells of a polypeptide toxin isolated from the marine snail Conus tessulatus.
    Author: Schweitz H, Renaud JF, Randimbivololona N, Préau C, Schmid A, Romey G, Rakotovao L, Lazdunski M.
    Journal: Eur J Biochem; 1986 Dec 15; 161(3):787-92. PubMed ID: 2431907.
    Abstract:
    The most active component in smooth muscle contraction, isolated from the whole venom of the marine snail Conus tessulatus, has a molecular mass of about 55 kDa. The toxin protein, tessulatus toxin, appeared to be constituted by two distinct polypeptide bands of 26 kDa and 29 kDa. The pure toxin caused a marked contraction of both guinea-pig ileum and rabbit aorta at nanomolar concentrations. Tessulatus-toxin-induced contraction was indirectly prevented by classical inhibitors of the voltage-dependent Ca2+ channel. Tessulatus toxin caused a large increase in the initial rate of 45Ca2+ uptake by cardiac cells. This uptake was insensitive to Ca2+ channel blockers at concentrations 100-1000 fold higher than those known to block voltage-dependent Ca2+ channels in these cells. Voltage clamp experiments have confirmed that tessulatus toxin was not directly active on the Ca2+ current. Tessulatus-toxin-stimulated 45Ca2+ influx was inhibited by dichlorobenzamil and suppressed when Na+ was substituted by Li+, indicating that the toxin acted via activation of the Na+/Ca2+ exchange system in cardiac cells. Activation by tessulatus toxin of the Na+/Ca2+ exchange system occurred via a toxin-stimulated Na+ entry into cardiac cells and was observed in the same range of toxin concentration which produced 45Ca2+ entry. The Na+ entry system that was activated by tessulatus toxin was insensitive to classic inhibitors of known Na+ entry systems in cardiac cells. Possible mechanisms by which tessulatus toxin induced Na+ entry into cardiac cells and contractions in smooth muscles are discussed. Tessulatus toxin is cytotoxic when used at high concentrations.
    [Abstract] [Full Text] [Related] [New Search]