These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Difference between human red blood cell Na+-Li+ countertransport and renal Na+-H+ exchange. Author: Kahn AM. Journal: Hypertension; 1987 Jan; 9(1):7-12. PubMed ID: 2432011. Abstract: Several laboratories have reported that the activities of sodium-lithium countertransport are increased in red blood cells from patients with essential hypertension. Based on the many similarities between this transport system and the renal sodium-proton exchanger, a hypothesis has been put forth in the literature that increased red blood cell sodium-lithium countertransport activity may be a marker for increased sodium-proton exchange activity in the renal proximal tubule. The present studies were designed to test the hypothesis that sodium-lithium countertransport in red blood cells from humans or rabbits is mediated by the same transport mechanism that mediates sodium-proton exchange in the renal brush border from those species. Similar to what has been reported for the rabbit, the present studies show that an amiloride-sensitive sodium-proton exchanger is present in human renal brush border vesicles. However, Na+-Li+ countertransport in human and rabbit red blood cells, assayed under several different conditions, was not inhibited by amiloride. In agreement with what has been reported for humans, the present studies show that extracellular proton-stimulated sodium efflux is inhibited by amiloride in rabbit red blood cells. These data demonstrate a difference (amiloride sensitivity) between the red blood cell sodium-lithium countertransporter and the renal brush border sodium-proton exchanger in humans and rabbits. These experiments detract from the hypothesis that increased red blood cell sodium-lithium countertransport activity in patients with essential hypertension is a marker for increased sodium-proton exchange activity in the renal brush border.[Abstract] [Full Text] [Related] [New Search]