These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Controlled porosity osmotic pump system for the delivery of diclofenac sodium: in-vitro and in-vivo evaluation. Author: Emara LH, Taha NF, El-Ashmawy AA, Raslan HM, Mursi NM. Journal: Pharm Dev Technol; 2014 Sep; 19(6):681-91. PubMed ID: 24320694. Abstract: The objective of this study was to develop controlled porosity osmotic pump (CPOP) tablets of diclofenac sodium (DS). The influence of different cores (polymers and osmogens) and coats (thickness and porosigen content) on DS release were studied. Results revealed that decreasing HPMC viscosity grade from 4000cp (K4M) to 15cp (E15) increased DS release. While increasing the tablet coat thickness decreased DS release. The presence of osmogen increased DS release in the following rank: mannitol > lactose > avicel. There was a direct relationship between increasing PEG-400 in the coating solution and the amount of drug released in all formulations studied, except in one condition. A comparative bioavailability study using a selected CPOP formulation (T) versus the innovator product (R) revealed that CPOP tablet maintained a less fluctuated DS plasma concentration for up to 24 h with a detected mean Cmax of 836.8 ± 142.4 and 445.0 ± 81.0 ng/mL for R and T, respectively. There were no statistically significant differences between R and T, concerning AUC0-24 and AUC0-∞. Moreover, the appearance of the multi-peak phenomenon, which is frequently observed with DS absorption, was found in only 25% of volunteers in case of T versus 75% in case of R.[Abstract] [Full Text] [Related] [New Search]