These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Visual-spatial learning impairments are associated with hippocampal PSD-95 protein dysregulation in a mouse model of fragile X syndrome. Author: Gandhi RM, Kogan CS, Messier C, Macleod LS. Journal: Neuroreport; 2014 Mar 05; 25(4):255-61. PubMed ID: 24323121. Abstract: Fragile X syndrome is the most common cause of inherited intellectual disability and is caused by the lack of fragile X mental retardation protein (FMRP) expression. In-vitro findings in mice and post-mortem autopsies in humans are characterized by dendritic spine abnormalities in the absence of Fmrp/FMRP. Biochemical and electrophysiological studies have identified postsynaptic density protein (PSD)-95 as having an established role in dendritic morphology as well as a molecular target of Fmrp. How Fmrp affects the expression of PSD-95 following behavioral learning is unknown. In the current study, wild type controls and Fmr1 knockout mice were trained in a subset of the Hebb-Williams (H-W) mazes. Dorsal hippocampal PSD-95 protein levels relative to a stable cytoskeleton protein (β-tubulin) were measured. We report a significant upregulation of PSD-95 protein levels in wild type mice, whereas training-related protein increases were blunted in Fmr1 knockout mice. In addition, there was a significant negative correlation between mean total errors on the mazes and PSD-95 protein levels. The coefficient of determination indicated that the mean total errors on the H-W mazes accounted for 35% of the variance in PSD-95 protein levels. These novel findings suggest that reduced PSD-95-associated postsynaptic plasticity may contribute to the learning and memory deficits observed in human fragile X syndrome patients.[Abstract] [Full Text] [Related] [New Search]