These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ang II-salt hypertension depends on neuronal activity in the hypothalamic paraventricular nucleus but not on local actions of tumor necrosis factor-α.
    Author: Bardgett ME, Holbein WW, Herrera-Rosales M, Toney GM.
    Journal: Hypertension; 2014 Mar; 63(3):527-34. PubMed ID: 24324037.
    Abstract:
    Development of angiotensin II (Ang II)-dependent hypertension involves microglial activation and proinflammatory cytokine actions in the hypothalamic paraventricular nucleus (PVN). Cytokines activate receptor signaling pathways that can both acutely grade neuronal discharge and trigger long-term adaptive changes that modulate neuronal excitability through gene transcription. Here, we investigated contributions of PVN cytokines to maintenance of hypertension induced by subcutaneous infusion of Ang II (150 ng/kg per min) for 14 days in rats consuming a 2% NaCl diet. Results indicate that bilateral PVN inhibition with the GABA-A receptor agonist muscimol (100 pmol/50 nL) caused significantly greater reductions of renal and splanchnic sympathetic nerve activity (SNA) and mean arterial pressure in hypertensive than in normotensive rats (P<0.01). Thus, ongoing PVN neuronal activity seems required for support of hypertension. Next, the role of the prototypical cytokine tumor necrosis factor-α was investigated. Whereas PVN injection of tumor necrosis factor-α (0.3 pmol/50 nL) acutely increased lumbar and splanchnic SNA and mean arterial pressure, interfering with endogenous tumor necrosis factor-α by injection of etanercept (10 μg/50 nL) was without effect in hypertensive and normotensive rats. Next, we determined that although microglial activation in PVN was increased in hypertensive rats, bilateral injections of minocycline (0.5 μg/50 nL), an inhibitor of microglial activation, failed to reduce lumbar or splanchnic SNA or mean arterial pressure in hypertensive or in normotensive rats. Collectively, these findings indicate that established Ang II-salt hypertension is supported by PVN neuronal activity, but short term maintenance of SNA and arterial blood pressure does not depend on ongoing local actions of tumor necrosis factor-α.
    [Abstract] [Full Text] [Related] [New Search]