These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Concentration-dependent like-charge pairing of guanidinium ions and effect of guanidinium chloride on the structure and dynamics of water from all-atom molecular dynamics simulation.
    Author: Mandal M, Mukhopadhyay C.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052708. PubMed ID: 24329297.
    Abstract:
    An all-atom molecular dynamics simulation shows concentration-dependent like-charge ion pairing of the guanidinium ion in an aqueous solution of guanidinium chloride. We have observed two types of like-charge ion pairing for guanidinium ions, namely, stacked ion pairs and solvent-separated ion pairs. Interestingly, both of these like-charge ion-pair formations are dependent on the concentration of guanidinium chloride in water. The probability of stacked like-charge ion-pair formation decreases, whereas, the probability of solvent-separated like-charge pairing increases as the concentration of guanidinium chloride increases, which is shown from radial distribution functions and is confirmed from the energy calculations. Besides like-charge ion-pair formation, we also investigated guanidinium chloride induced changes in water structure. Hydrogen-bond analysis indicates that guanidinium chloride does not alter the strict-hydrogen-bonding patterns of water, whereas, it breaks the bend-hydrogen bond and the non-hydrogen-bonding patterns. Tetrahedral order, nearest neighbor orientation, and distance distribution of water molecules around a probe water molecule show the extent of water structure distortion.
    [Abstract] [Full Text] [Related] [New Search]