These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Constructing the major biosynthesis pathways for amino acids in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae), based on the transcriptome data. Author: Wan PJ, Yang L, Wang WX, Fan JM, Fu Q, Li GQ. Journal: Insect Mol Biol; 2014 Apr; 23(2):152-64. PubMed ID: 24330026. Abstract: Nilaparvata lugens is a serious phloem-feeding pest of rice throughout Asia. Rice phloem sap can meet its nutrition requirement for sugars but not for some essential amino acids such as isoleucine, leucine, methionine, phenylalanine, tryptophan, lysine, arginine and histidine. N. lugens harbours yeast-like symbionts in mycetocytes formed by abdominal fat body cells. Removal of the symbionts results in negative physiological effects, suggesting that the symbionts play a pivotal role in the nitrogen metabolism. In the present paper, 521 mRNA expressed sequence tags (ESTs) encoding 126 enzymes that were involved in amino acid biosynthesis were identified based on a transcriptome data, reverse transcription (RT)-PCR and rapid amplification of cDNA ends. Similarity analysis, codon usage bias, along with tissue-biased expression and phylogenetic analysis of a subset of ESTs, suggest that 437 ESTs out of the 521 originate from symbionts, and the remaining 84 mRNA fragments come from N. lugens. Accordingly, the biosynthesis pathways for 20 amino acids were manually constructed. It is postulated that both N. lugens and its symbiont can independently assimilate ammonia and biosynthesize seven non-essential amino acids: glutamate; glutamine; aspartate; asparagine; alanine; serine; and glycine. N. lugens and symbiont enzymes may work collaboratively to catalyse the biosynthesis of proline, methionine, valine, leucine, isoleucine, phenylalanine and tyrosine. We infer from this that symbionts function in the biosynthesis of lysine, arginine, tryptophan, threonine, histidine and cysteine. Our data support the previously proposed hypothesis, i.e. the yeast-like symbionts compensate for, at least partially, the amino acid needs of N. lugens.[Abstract] [Full Text] [Related] [New Search]