These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation.
    Author: Liang RP, Wang XN, Liu CM, Meng XY, Qiu JD.
    Journal: J Chromatogr A; 2014 Jan 03; 1323():135-42. PubMed ID: 24331371.
    Abstract:
    A novel chip-based enantioselective open-tubular capillary electrochromatography (OT-CEC) was developed employing bovine serum albumin (BSA) conjugated polydopamine-graphene oxide (PDA/GO) nanocomposites (PDA/GO/BSA) as stationary phase. After the poly(dimethylsiloxane) (PDMS) microfluidic chip was filled with a freshly prepared solution containing dopamine and graphene oxide, PDA/GO nanocomposites were formed and deposited on the inner wall of microchannel as permanent coating via the oxidation of dopamine by the oxygen dissolved in the solution. The PDA/GO-coated PDMS microchips not only have the adhesion of PDA that make them easily immobilized in the microchannel, but also have the larger surface and excellent biocompatibility of graphene which can incorporate much more biomolecules and well maintain their biological activity. In addition, incorporation of GO in PDA film can make surface morphology more rough, which is beneficial for enhancing the loading capacity of proteins in the microchannels and increasing sample capacity of OT-CEC columns. BSA was stably immobilized in the PDMS microchannel to fabricate a protein-stationary phase. Compared with the native PDMS microchannels, the modified surfaces exhibited much better wettability, more stable electroosmotic mobility, and less nonspecific adsorption. The efficient separation of chiral amino acids (tryptophan and threonine) and chiral dipeptide demonstrate that the constructed OT-CEC columns own ideal enantioselectivity. The presented strategy using PDA/GO coating as a versatile platform for facile conjugation of proteins may offer new processing strategies to prepare a functional surface designed on microfluidic chips.
    [Abstract] [Full Text] [Related] [New Search]