These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Minisegments of newborn rat optic nerves in vitro: gliogenesis and myelination. Author: Omlin FX, Waldmeyer J. Journal: Exp Brain Res; 1986; 65(1):189-99. PubMed ID: 2433143. Abstract: The question of whether the development of CNS glial cells requires the presence of axons or not can be studied with in vitro systems. In order to compare the differentiation of glial cells during development in vitro with that in situ, we have selected the optic nerve, which is anatomically as well as histotypically a well defined structure. For the in vitro investigations, small explants, called minisegments, of newborn rat optic nerves were cultivated taking four major conditions into account: the regular size of the minisegments should guarantee a permanent exchange of the culture medium in order to avoid cell death, neither mechanical nor enzymatic dissociation of the tissue were applied, the minisegments were explanted into flasks without substrate for cell adhesion and the minisegments were under constant gyratory agitation. The following in situ results were obtained: optic nerves of newborn rats are morphologically characterized by the presence of naked axons, astrocytes, glial precursors, and the absence of both differentiated oligodendrocytes and myelin. At postnatal day 5 myelin sheaths are still absent. Two weeks after birth, differentiated oligodendrocytes and microglial cells are present and numerous axons are surrounded by compact myelin. The in vitro experiments show the following main results, which were obtained after 14 h, 2 d, 5 d and 14 d in culture: during time in culture, the shape of minisegment of newborn rat optic nerves undergoes drastic changes, which indicate high cellular dynamics. After 14 h in vitro, axonal profiles, cells with pyknotic nuclei as well as clusters of astrocytes and glial precursors are present. After 2 days in culture the axonal profiles disappeared and the number of degenerating cells decreased drastically. Many large cells, probably phagocytes containing inclusions and more cells are differentiated. At the stage of 5 d in vitro 4 major types of cells can be distinguished: differentiated oligodendrocytes, which form compact and loose myelin, astrocytes, large and small glioblasts and phagocytes. Immunoprecipitates for myelin basic protein and/or myelin associated glycoprotein were found in oligodendrocytes, in their processes and associated to the myelin. Processes of some astrocytes showed immunoreactive products of glial fibrillary acidic protein. After two weeks in culture, the minisegments were mostly composed of astrocytes, whereas oligodendrocytes became rare and phagocytes disappeared. It can be concluded that CNS glial cells can attain their structural and immunocytochemical characteristics in the total absence of neuronal cell bodies and axons.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]