These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A unique F-type H⁺-ATPase from Streptococcus mutans: an active H⁺ pump at acidic pH.
    Author: Sasaki Y, Nogami E, Maeda M, Nakanishi-Matsui M, Iwamoto-Kihara A.
    Journal: Biochem Biophys Res Commun; 2014 Jan 10; 443(2):677-82. PubMed ID: 24333424.
    Abstract:
    We have shown previously that the Streptococcus mutans F-type H(+)-ATPase (F(O)F(1)) c subunit gene could complement Escherichia coli defective in the corresponding gene, particularly at acidic pH (Araki et al., (2013) [14]). In this study, the entire S. mutans F(O)F(1) was functionally assembled in the E. coli plasma membrane (SF(O)F(1)). Membrane SF(O)F(1) ATPase showed optimum activity at pH 7, essentially the same as that of the S. mutans, although the activity of E. coli F(O)F(1) (EF(O)F(1)) was optimum at pH≥9. The membranes showed detectable ATP-dependent H(+)-translocation at pH 5.5-6.5, but not at neutral conditions (pH≥7), consistent with the role of S. mutans F(O)F(1) to pump H(+) out of the acidic cytoplasm. A hybrid F(O)F(1), consisting of membrane-integrated F(O) and -peripheral F(1) sectors from S. mutans and E. coli (SF(O)EF(1)), respectively, essentially showed the same pH profile as that of EF(O)F(1) ATPase. However, ATP-driven H(+)-transport was similar to that by SF(O)F(1), with activity at acidic pH. Replacement of the conserved c subunit Glu53 in SF(O)F(1) abolished H(+)-transport at pH 6 or 7, suggesting its role in H(+) transport. Mutations in the SF(O)F(1) c subunit, Ser17Ala or Glu20Ile, changed the pH dependency of H(+)-transport, and the F(O) could transport H(+) at pH 7, as the membranes with EF(O)F(1). Ser17, Glu20, and their vicinity were suggested to be involved in H(+)-transport in S. mutans at acidic pH.
    [Abstract] [Full Text] [Related] [New Search]