These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: To shunt or not to shunt? An experimental study comparing temporary vascular shunts and venous ligation as damage control techniques for vascular trauma.
    Author: Marinho de Oliveira Góes Junior A, de Campos Vieira Abib S, de Seixas Alves MT, Venerando da Silva Ferreira PS, Carvalho de Andrade M.
    Journal: Ann Vasc Surg; 2014 Apr; 28(3):710-24. PubMed ID: 24334238.
    Abstract:
    BACKGROUND: To evaluate vascular flow through temporary vascular shunts inserted into peripheral arteries and veins and the repercussion, on the arterial perfusion, of venous ligation and venous shunt insertion in an experimental model for damage control. METHODS: Experimental study in pigs. Animals were distributed in 5 groups: group 1, right external iliac artery (EIA) shunting and right external iliac vein (EIV) ligation; group 2, right EIA shunting and right EIV shunting; group 3, right EIV ligation; group 4, right EIV shunting; group 5, no vascular shunting and no venous ligation. Flowmeters were used to measure vascular flow on right and left external iliac vessels, and blood samples were collected from the EIVs for biochemical analysis. A right anterior limb biopsy was performed before shock. Hemorrhagic shock was induced through the external right jugular vein, until the vascular flow through right iliac external artery shunt or right iliac external vein shunt (group 4) ceased or until the animal's death. After the end of the experiments, biopsies of bilateral hind limb were obtained for histologic analysis. For statistical analysis, Microsoft Office Excel 2007 and BioEstat 5.0 (2007) were used. RESULTS: In the absence of hemorrhagic shock, venous ligation (group 1) was associated with a 38.8% reduction (P < 0.05) and venous shunting with a 28.4% reduction on the vascular flow through the arterial shunt. When associated with hemorrhagic shock, the mean vascular flow on the right EIA was 13 mL/min and on the left EIA was 41.2 mL/min; on group 2, the right EIA flow was 8.5 mL/min and the left EIA flow was 8.1 mL/min. When associated with hemorrhagic shock, the pO2 was 25.8 mm Hg on right EIV and 33.8 mm Hg on the left EIV for group 1 (P < 0.05), whereas for group 2, the pO2 was 22.6 mm Hg on right EIV and 22.8 mm Hg on the left EIV. On group 1, serum potassium was 3.84 mEq/L on the right EIV and 3.96 mEq/L on the left EIV, whereas on group 2, it was 7.1 mEq/L on the right EIV and 5.88 mEq/L on the left EIV (P < 0.05). CONCLUSIONS: In the developed experimental model, venous shunting, when compared with venous ligation, offered less resistance to vascular flow through the arterial shunt and allowed a more efficient limb venous drainage than simple vein ligature.
    [Abstract] [Full Text] [Related] [New Search]