These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of pulmonary artery perfusion with urinary trypsin inhibitor as a lung protective strategy under hypothermic low-flow cardiopulmonary bypass in an infant piglet model. Author: Li W, Wu X, Yan F, Liu J, Tang Y, Ma K, Li S. Journal: Perfusion; 2014 Sep; 29(5):434-42. PubMed ID: 24335190. Abstract: OBJECTIVE: This study aimed to evaluate the effects of pulmonary artery perfusion with a urinary trypsin inhibitor (UTI) as a lung protective strategy in order to provide an experimental basis for immature lung clinical protective strategies on deep hypothermia with low-flow (DHLF) cardiopulmonary bypass (CPB)-induced pulmonary injury in an infant piglet model. METHODS: The piglets (n=15), aged 18.7±0.3 days, weight 4.48±0.21kg, were randomly divided into 3 groups, with 5 piglets in each group: the control group, the pulmonary artery perfusion without UTI group (Group P) and the pulmonary artery perfusion with UTI group (Group U). The levels of the cytokines tumour necrosis factor-α, myeloperoxidase, malondialdehyde and interleukin-10 (TNF-α, MPO, MDA and IL-10) in pulmonary venous serum and lung tissue and the activity of NF-kappa B in lung tissue were measured by enzyme-linked immunosorbent assay (ELISA) and electrophoresis mobility shift assay (EMSA), respectively. RESULTS: After DHLF-CPB, all of the piglets demonstrated a state of lung injury as a deterioration of lung function indices, lung injury scores, pulmonary ultrastructure changes, expression of TNF-α, MPO, MDA and IL-10 and the activities of nuclear factor-kappa B (NF-κB), while pulmonary artery perfusion with UTI significantly ameliorated lung function and histopathological changes, with greatly decreased serum levels of TNF-α and MPO compared to the other two groups. Also, we found an increase in the level of IL-10 in Group U lungs compared with that in Group P lungs, which correlated with a strong inhibition in the activity of NF-κB. CONCLUSION: Pulmonary artery perfusion with UTI ameliorated the DHLF-induced immature pulmonary injury in the lungs via a reduction of pro-inflammatory cytokine expression and up-regulated levels of IL-10 by inhibiting the activity of NF-κB.[Abstract] [Full Text] [Related] [New Search]