These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mapping of seed shattering loci provides insights into origin of weedy rice and rice domestication. Author: Subudhi PK, Singh PK, DeLeon T, Parco A, Karan R, Biradar H, Cohn MA, Sasaki T. Journal: J Hered; 2014; 105(2):276-87. PubMed ID: 24336929. Abstract: Seed shattering is an important trait that distinguishes crop cultivars from the wild and weedy species. The genetics of seed shattering was investigated in this study to provide insights into rice domestication and the evolution of weedy rice. Quantitative trait locus (QTL) analysis, conducted in 2 recombinant inbred populations involving 2 rice cultivars and a weedy rice accession of the southern United States, revealed 3-5 QTLs that controlled seed shattering with 38-45% of the total phenotypic variation. Two QTLs on chromosomes 4 and 10 were consistent in both populations. Both cultivar and weedy rice contributed alleles for increased seed shattering. Genetic backgrounds affected both QTL number and the magnitude of QTL effects. The major QTL qSH4 and a minor QTL qSH3 were validated in near-isogenic lines, with the former conferring a significantly higher degree of seed shattering than the latter. Although the major QTL qSH4 overlapped with the sh4, the presence of the nonshattering single nucleotide polymorphism allele in the weedy rice accession suggested involvement of a linked locus or an alternative molecular genetic mechanism. Overlapping of several QTLs with those from earlier studies indicated that weedy rice may have been derived from the wild species Oryza rufipogon. Natural hybridization of rice cultivars with the highly variable O. rufipogon present in different geographic regions might be responsible for the evolution of a wide range of phenotypic and genotypic variabilities seen in weedy rice populations worldwide.[Abstract] [Full Text] [Related] [New Search]