These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The 15-deoxy-δ12,14-prostaglandin J2 inhibits LPS‑stimulated inflammation via enhancement of the platelet‑activating factor acetylhydrolase activity in human retinal pigment epithelial cells. Author: Jung WK, Lee CM, Lee DS, Na G, Lee DY, Choi I, Park SG, Seo SK, Yang JW, Choi JS, Lee YM, Park WS, Choi IW. Journal: Int J Mol Med; 2014 Feb; 33(2):449-56. PubMed ID: 24337644. Abstract: A well-recognized natural ligand of PPARγ, 15-deoxy-δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) possesses immunomodulatory properties. The aim of this study was to elucidate whether 15d-PGJ(2) was able to attenuate lipopolysaccharide (LPS)-induced inflammatory responses in human retinal pigment epithelial (RPE) cells, which are involved in ocular immune responses. In addition, we examined whether the platelet activating factor (PAF) is associated with the anti-inflammatory activity of 15d-PGJ(2). ARPE19 cells treated with varying concentrations of 15d-PGJ(2) and a PAF antagonist (CV3988) were used in this study. The activity of PAF-acetylhydrolase (PAF-AH) was assayed by treatment with 15d-PGJ(2) and CV3988 in the presence of LPS. 15d-PGJ(2) and CV3988 inhibited the LPS-induced mRNA expression and protein production of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) in ARPE19 cells. These effects resulting from 15d-PGJ(2) were not abrogated by the PPARγ antagonist, indicating that the actions were PPARγ-independent. Furthermore, 15d-PGJ(2) and CV3988 enhanced the PAF-AH activity. Additionally, 15d-PGJ(2) inhibited the phosphorylation of the extracellular signal-regulated kinase (ERK) and the activation of nuclear transcription factor-κB (NF-κB). These results demonstrated that 15d-PGJ(2) reduced LPS-stimulated inflammatory responses in ARPE19 cells by enhancing the PAH-AH activity. These results suggest that 15d-PGJ(2) may have potent anti-inflammatory activity against ocular inflammation.[Abstract] [Full Text] [Related] [New Search]