These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The use of the regenerating frog sciatic nerve for pharmacological studies of orthograde and retrograde axonal transport.
    Author: Edström A, Ekström P, Kanje M, Sjöberg J.
    Journal: Brain Res; 1987 Jan 13; 401(1):34-42. PubMed ID: 2434190.
    Abstract:
    The outgrowth region of the regenerating frog sciatic nerve shows an increased permeability for various drugs, which has been utilized for pharmacological studies of axonal transport. Six days after a bilateral crush lesion, the nerves, including the spinal ganglia, were incubated in a compartmented chamber. Orthograde transport was assessed from the proximodistal distribution and the accumulation of labelled proteins in the nerve growth region. Retrograde transport was examined by allowing orthogradely transported materials to reverse at the regenerating region and then to accumulate at a ligature during a second incubation period. The distribution of radioactivity along the nerve was assayed by fluorography of whole-mount nerve preparations or by scintillation counting. Fluorography made it possible to increase the spatial resolution and to demonstrate effects in the elongating part of the regenerating nerve. Colchicine at low concentrations (10-100 microM) only inhibited axonal transport in the outgrowth region (6 mm long at 6 days after crush) and along some mm of the nerve proximal to the crush. Compound 48/80 (50 micrograms/ml), the most specific calmodulin inhibitor so far described, inhibited the transport along the same part of the nerve. Cytochalasin B (10 micrograms/ml) inhibited transport by effects limited to the outgrowth region. Both orthograde and retrograde transport showed sensitivity to these and some other drugs. The regenerating frog sciatic nerve seems to have significant advantages for pharmacological studies of axonal transport.
    [Abstract] [Full Text] [Related] [New Search]