These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chiral fungicide triadimefon and triadimenol: Stereoselective transformation in greenhouse crops and soil, and toxicity to Daphnia magna. Author: Li Y, Dong F, Liu X, Xu J, Han Y, Zheng Y. Journal: J Hazard Mater; 2014 Jan 30; 265():115-23. PubMed ID: 24342051. Abstract: Various chiral pesticides are used in greenhouses to ensure high crop yields. However, detailed knowledge on the environmental behavior of such chiral contaminants with respect to enantioselectivity in the greenhouse has received little attention so far. Here, the widely used fungicide triadimefon was chosen as a "chiral probe" to investigate its enantioselective degradation and formation of triadimenol in greenhouse tomato, cucumber, and soil under different application modes. In addition, the stereoselectivity of individual isomers of triadimefon and triadimenol in aquatic toxicity were first studied. Significant differences in their acute toxicity to Daphnia magna were observed among the isomers. Under foliage application or soil irrigation application, S-(+)-triadimefon was preferentially degraded, resulting in relative enrichment of the more toxic R-(-)-enantiomer in tomato, cucumber, and soil. Further enantioselective analysis of converted triadimenol showed that the compositions of the four product stereoisomers were different and closely dependent on environmental conditions: the most toxic RS-(+)-triadimenol was the most preferentially produced isomer in tomato under foliage treatment, while the RR-(+)-triadimenol was proved to be the highest amount of metabolite isomer in cucumber and soil under both treatment modes and in tomato under soil treatment.[Abstract] [Full Text] [Related] [New Search]