These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural analysis of 5S rRNA, 5S rRNA-protein complexes and ribosomes employing RNase H and d(GTTCGG).
    Author: Lorenz S, Hartmann RK, Piel N, Ulbrich N, Erdmann VA.
    Journal: Eur J Biochem; 1987 Mar 02; 163(2):239-46. PubMed ID: 2434327.
    Abstract:
    The hybridization of d(GTTCGG) to eubacterial 5S rRNAs, 5S rRNA-protein complexes, 70S ribosomes and 50S and 30S ribosomal subunits was investigated. This oligonucleotide, which may be considered to be an analogue of the T psi CG loop of tRNAs, was chosen in order to investigate a possible interaction between tRNAs with ribosomal components during protein synthesis. The hybridization was analysed by RNase H hydrolysis studies and, in the case of the ribosomes and ribosomal subunits, in addition with the radioactively labelled oligodeoxyribonucleotide in binding studies. The results obtained lead to the conclusion that nucleotides in loop c, i.e. positions 42-47, are available for oligonucleotide interaction in free Escherichia coli and Bacillus stearothermophilus 5S rRNAs and not available in the corresponding 5S rRNA-protein complexes. The 70S ribosomes and ribosomal subunits did not interact with the oligonucleotide. Under the assumption that d(GTTCGG) is an analogue of the T psi CG loop of tRNAs and in view of the results obtained, we conclude that in the unprogrammed ribosomes the T psi CG loop of tRNAs does not interact via standard Watson-Crick base pairs with the ribosomal 5S, 16S or 23S RNAs.
    [Abstract] [Full Text] [Related] [New Search]