These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells.
    Author: Subedi KP, Paudel O, Sham JS.
    Journal: Am J Physiol Cell Physiol; 2014 Apr 01; 306(7):C659-69. PubMed ID: 24352334.
    Abstract:
    Intracellular calcium (Ca(2+)) plays pivotal roles in distinct cellular functions through global and local signaling in various subcellular compartments, and subcellular Ca(2+) signal is the key factor for independent regulation of different cellular functions. In vascular smooth muscle cells, subsarcolemmal Ca(2+) is an important regulator of excitation-contraction coupling, and nucleoplasmic Ca(2+) is crucial for excitation-transcription coupling. However, information on Ca(2+) signals in these subcellular compartments is limited. To study the regulation of the subcellular Ca(2+) signals, genetically encoded Ca(2+) indicators (cameleon), D3cpv, targeting the plasma membrane (PM), cytoplasm, and nucleoplasm were transfected into rat pulmonary arterial smooth muscle cells (PASMCs) and Ca(2+) signals were monitored using laser scanning confocal microscopy. In situ calibration showed that the Kd for Ca(2+) of D3cpv was comparable in the cytoplasm and nucleoplasm, but it was slightly higher in the PM. Stimulation of digitonin-permeabilized cells with 1,4,5-trisphosphate (IP3) elicited a transient elevation of Ca(2+) concentration with similar amplitude and kinetics in the nucleoplasm and cytoplasm. Activation of G protein-coupled receptors by endothelin-1 and angiotensin II preferentially elevated the subsarcolemmal Ca(2+) signal with higher amplitude in the PM region than the nucleoplasm and cytoplasm. In contrast, the receptor tyrosine kinase activator, platelet-derived growth factor, elicited Ca(2+) signals with similar amplitudes in all three regions, except that the rise-time and decay-time were slightly slower in the PM region. These data clearly revealed compartmentalization of Ca(2+) signals in the subsarcolemmal regions and provide the basis for further investigations of differential regulation of subcellular Ca(2+) signals in PASMCs.
    [Abstract] [Full Text] [Related] [New Search]