These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contrast-enhanced microCT (EPIC-μCT) ex vivo applied to the mouse and human jaw joint.
    Author: Renders GA, Mulder L, Lin AS, Langenbach GE, Koolstra JH, Guldberg RE, Everts V.
    Journal: Dentomaxillofac Radiol; 2014; 43(2):20130098. PubMed ID: 24353248.
    Abstract:
    OBJECTIVES: The temporomandibular joint (TMJ) is susceptive to the development of osteoarthritis (OA). More detailed knowledge of its development is essential to improve our insight into TMJ-OA. It is imperative to have a standardized reliable three-dimensional (3D) imaging method that allows for detailed assessment of both bone and cartilage in healthy and diseased joints. We aimed to determine the applicability of a contrast-enhanced microCT (µCT) technique for ex vivo research of mouse and human TMJs. METHODS: Equilibrium partitioning of an ionic contrast agent via µCT (EPIC-µCT) was previously applied for cartilage assessment in the knee joint. The method was ex vivo, applied to the mouse TMJ and adapted for the human TMJ. RESULTS: EPIC-µCT (30-min immersion time) was applied to mouse mandibular condyles, and 3D imaging revealed an average cartilage thickness of 110 ± 16 µm. These measurements via EPIC-µCT were similar to the histomorphometric measures (113 ± 19 µm). For human healthy OA-affected TMJ samples, the protocol was adjusted to an immersion time of 1 h. 3D imaging revealed a significant thicker cartilage layer in joints with early signs of OA compared with healthy joints (414.2 ± 122.6 and 239.7 ± 50.5 µm, respectively). A subsequent significant thinner layer was found in human joints with late signs of OA (197.4 ± 159.7 µm). CONCLUSIONS: The EPIC-µCT technique is effective for the ex vivo assessment of 3D cartilage morphology in the mouse as well as human TMJ and allows bone-cartilage interaction research in TMJ-OA.
    [Abstract] [Full Text] [Related] [New Search]