These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Particle characterization in retail environments: concentrations, sources, and removal mechanisms. Author: Zaatari M, Siegel J. Journal: Indoor Air; 2014 Aug; 24(4):350-61. PubMed ID: 24354962. Abstract: UNLABELLED: Particles in retail environments can have consequences for the occupational exposures of retail workers and customers, as well as the energy costs associated with ventilation and filtration. Little is known about particle characteristics in retail environments. We measured indoor and outdoor mass concentrations of PM10 and PM2.5 , number concentrations of submicron particles (0.02-1 μm), size-resolved 0.3-10 μm particles, as well as ventilation rates in 14 retail stores during 24 site visits in Pennsylvania and Texas. Overall, the results were generally suggestive of relatively clean environments when compared to investigations of other building types and ambient/occupational regulatory limits. PM10 and PM2.5 concentrations (mean ± s.d.) were 20 ± 14 and 11 ± 10 μg/m(3), respectively, with indoor-to-outdoor ratios of 1.0 ± 0.7 and 0.88 ± 1.0. Mean submicron particle concentrations were 7220 ± 7500 particles/cm(3) with an indoor-to-outdoor ratio of 1.18 ± 1.30. The median contribution to PM10 and PM2.5 concentrations from indoor sources (vs. outdoors) was 83% and 53%, respectively. There were no significant correlations between measured ventilation rates and particle concentrations of any size. When examining options to lower PM2.5 concentrations below regulatory limits, the required changes to ventilation and filtration efficiency were site specific and depended on the indoor and outdoor concentration, emission rate, and infiltration level. PRACTICAL IMPLICATIONS: Little is known about particle concentrations, contribution of indoor sources, and emission rates in retail environments. Knowledge of these particle characteristics informs health scientists with input parameters to include in exposure modeling. The predicted concentration change in response to different ventilation rates and filtration efficiencies may be used for guidance to develop control strategies to lower particulate matter concentrations in retail environments.[Abstract] [Full Text] [Related] [New Search]