These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of a quantitative approach using surface-enhanced Raman chemical imaging: first step for the determination of an impurity in a pharmaceutical model. Author: De Bleye C, Sacré PY, Dumont E, Netchacovitch L, Chavez PF, Piel G, Lebrun P, Hubert P, Ziemons E. Journal: J Pharm Biomed Anal; 2014 Mar; 90():111-8. PubMed ID: 24356238. Abstract: This publication reports, for the first time, the development of a quantitative approach using surface-enhanced Raman chemical imaging (SER-CI). A pharmaceutical model presented as tablets based on paracetamol, which is the most sold drug around the world, was used to develop this approach. 4-Aminophenol is the main impurity of paracetamol and is actively researched in pharmaceutical formulations because of its toxicity. As its concentration is generally very low (<0.1%, w/w), conventional Raman chemical imaging cannot be used. In this context, a SER-CI method was developed to quantify 4-aminophenol assessing a limit of quantification below its limit of specification of 1000 ppm. Citrate-reduced silver nanoparticles were used as SERS substrate and these nanoparticles were functionalized using 1-butanethiol. Different ways to cover the tablets surface by butanethiol-functionalized silver nanoparticles were tested and a homogeneity study of the silver nanoparticles covering was realized. This homogeneity study was performed in order to choose the best way to cover the surface of tablets by silver colloid. Afterwards, the optimization of the SER-CI approach was necessary and different spectral intensity normalizations were tested. Finally, a quantitative approach using SER-CI was developed enabling to quantify 4-aminophenol from 0.025% to 0.2% in paracetamol tablets. This quantitative approach was tested on two different series of tablets using different batches of silver nanoparticles.[Abstract] [Full Text] [Related] [New Search]