These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sulfated glycosaminoglycans support osteoblast functions and concurrently suppress osteoclasts. Author: Salbach-Hirsch J, Ziegler N, Thiele S, Moeller S, Schnabelrauch M, Hintze V, Scharnweber D, Rauner M, Hofbauer LC. Journal: J Cell Biochem; 2014 Jun; 115(6):1101-11. PubMed ID: 24356935. Abstract: In order to improve bone regeneration, development and evaluation of new adaptive biomaterials is warranted. Glycosaminoglycans (GAGs) such as hyaluronan (HA) and chondroitin sulfate (CS) are major extracellular matrix (ECM) components of bone, and display osteogenic properties that are potentially useful for biomaterial applications. Using native and synthetic sulfate-modified GAGs, we manufactured artificial collagen/GAG ECM (aECMs) coatings, and evaluated how the presence of GAGs and their degree of sulfation affects the differentiation of murine mesenchymal stem cells to osteoblasts (OB) cultivated on these aECMs. GAG sulfation regulated osteogenesis at all key steps of OB development. Adhesion, but not migration, was diminished by 50% (P < 0.001). Proliferation and metabolic activity were slightly (P < 0.05) and cell death events strongly (P < 0.001) down-regulated due to a switch from proliferative to matrix synthesis state. When exposed to sulfated GAGs, OB marker genes, such as alkaline phosphatase, osteoprotegerin (OPG), and osteocalcin increased by up to 28-fold (P < 0.05) and calcium deposition up to 4-fold (P < 0.05). Furthermore, GAG treatment of OBs suppressed their ability to support osteoclast (OC) differentiation and resorption. In conclusion, GAG sulfation controls bone cell homeostasis by concurrently promoting osteogenesis and suppressing their paracrine support of OC functions, thus displaying a favorable profile on bone remodeling. Whether these cellular properties translate into improved bone regeneration needs to be validated in vivo.[Abstract] [Full Text] [Related] [New Search]