These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nardostachys chinensis induces the differentiation of human promyelocytic leukemic cells through the activation of the protein kinase C-dependent extracellular signal-regulated kinase signaling pathway. Author: Ju SM, Kang JG, Pae HO, Lee GS, Kim WS, Lyu YS, Jeon BH. Journal: Int J Mol Med; 2014 Mar; 33(3):573-80. PubMed ID: 24357020. Abstract: The underground parts of Nardostachys chinensis (N. chinensis), which belongs the genus Valerianaceae, have been used as sedative and analgesic agents in traditional Korean medicine for centuries. The mitogen-activated protein kinases (MAPKs) are serine/threonine kinases involved in the regulation of various cellular responses, such as cell proliferation, differentiation and apoptosis. Protein kinase C (PKC) plays a key role in the regulation of proliferation and differentiation. In this study, we investigated the signaling pathways involved in the differentiation of the HL-60 human leukemic cells induced by N. chinensis extract. Treatment with N. chinensis extract resulted in the activation of the extracellular signal-regulated kinase (ERK) pathway and induced the differentiation of HL-60 cells into granulocytes. The activation of p38 MAPK was also observed 24 h after treatment; however, the activation of c-Jun N-terminal kinase (JNK) was unaffected. Treatment with an inhibitor of ERK (PD98059) blocked the nitrotetrazolium blue chloride (NBT) reducing activity and CD11b expression in the N. chinensis-treated HL-60 cells, whereas treatment with an inhibitor of p38 MAPK (SB203580) had no significant effect on NBT reducing activity and CD11b expression. In addition, N. chinensis extract increased PKC activity and the protein levels of PKCα, PKCβI and PKCβII isoforms, without a significant change in the protein levels of the PKCγ isoform. PKC inhibitors (GF 109203X, chelerythrine and H-7) inhibited the differentiation of HL-60 cells into granulocytes, as well as ERK activation in the N. chinensis-treated HL-60 cells. These results indicate that the PKC and ERK signaling pathways may be involved in the induction, by N. chinensis extract, of the differentiation of HL-60 cells into granulocytes.[Abstract] [Full Text] [Related] [New Search]