These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transcriptional regulation of the c-myc protooncogene by 1,25-dihydroxyvitamin D3 in HL-60 promyelocytic leukemia cells. Author: Simpson RU, Hsu T, Begley DA, Mitchell BS, Alizadeh BN. Journal: J Biol Chem; 1987 Mar 25; 262(9):4104-8. PubMed ID: 2435730. Abstract: Exposure of HL-60 promyelocytic leukemia cells to calcitriol results in a decrease in steady-state levels of c-myc mRNA and induces cellular differentiation. We have asked whether calcitriol has a direct effect on the transcription of the c-myc gene. 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) decreased RNA elongation in a nuclear run-off transcription assay by 4 h after treatment. In the continuous presence of 1,25-(OH)2D3, HL-60 cell transcription of c-myc was decreased by 38% at 4 h and was abolished by 48 h. In contrast, the transcription of beta-actin was not affected by 1,25-(OH)2D3 treatment. The rate of transcription of c-myc and beta-actin was proportional to the number of nuclei and to time. Furthermore, specific hybridization of c-myc and beta-actin RNA was a linear function of RNA input. After a 48-h treatment, the c-myc/beta-actin ratio was decreased by 80-100% at [32P]RNA inputs ranging from 2 to 20 X 10(6) cpm/ml. These data temporally correlate inhibition of c-myc transcription with decreases in the steady-state levels of c-myc mRNA as assessed by Northern blot analysis. We conclude that the effect of 1,25-(OH)2D3 on c-myc expression occurs at the transcriptional level.[Abstract] [Full Text] [Related] [New Search]