These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photoinduced electron transfer of zinc porphyrin-oligo(thienylenevinylene)-fullerene[60] triads; thienylenevinylenes as efficient molecular wires. Author: Oswald F, Islam DM, El-Khouly ME, Araki Y, Caballero R, de la Cruz P, Ito O, Langa F. Journal: Phys Chem Chem Phys; 2014 Feb 14; 16(6):2443-51. PubMed ID: 24358474. Abstract: Two novel donor-bridge-acceptor arrays (ZnP-nTV-C60) with zinc porphyrin (ZnP) and fullerene (C60), covalently connected by oligo(thienylenevinylene) (nTV) molecular wires (n = 3 and 8; ), have been prepared in a multistep convergent manner. The influence of the nTV-length on the electrochemical and electronic properties of the ZnP-nTV-C60 triads has been revealed. Interestingly, an efficient photoinduced electron transfer process occurs in both triads with formation of intermediate radical-ion pairs (namely, ZnP˙(+)-nTV-C60˙(-) and ZnP-nTV˙(+)-C60˙(-)) as confirmed by the nanosecond transient absorption measurements in the visible and NIR regions. In polar and nonpolar solvents, the rate constants of charge-separation processes (kCS) via(1)ZnP*-nTV-C60 were found to decrease from ca. 1.2 × 10(10) s(-1) for n = 3 (RDA = 20 Å) to (5-7) × 10(9) s(-1) for n = 8 (RDA = 60 Å) on the basis of fluorescence lifetime measurements of the ZnP moiety. From these data, together with those previously obtained ones for n = 4 in the related ZnP-nTV-C60 systems, a low attenuation coefficient was evaluated for the nTV molecular wires.[Abstract] [Full Text] [Related] [New Search]