These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Entropically patchy particles: engineering valence through shape entropy. Author: van Anders G, Ahmed NK, Smith R, Engel M, Glotzer SC. Journal: ACS Nano; 2014 Jan 28; 8(1):931-40. PubMed ID: 24359081. Abstract: Patchy particles are a popular paradigm for the design and synthesis of nanoparticles and colloids for self-assembly. In "traditional" patchy particles, anisotropic interactions arising from patterned coatings, functionalized molecules, DNA, and other enthalpic means create the possibility for directional binding of particles into higher-ordered structures. Although the anisotropic geometry of nonspherical particles contributes to the interaction patchiness through van der Waals, electrostatic, and other interactions, how particle shape contributes entropically to self-assembly is only now beginning to be understood. The directional nature of entropic forces has recently been elucidated. A recently proposed theoretical framework that defines and quantifies directional entropic forces demonstrates the anisotropic-that is, patchy-nature of these emergent, attractive forces. Here we introduce the notion of entropically patchy particles as the entropic counterpart to enthalpically patchy particles. Using three example "families" of shapes, we show how to modify entropic patchiness by introducing geometric features to the particles via shape operations so as to target specific crystal structures assembled here with Monte Carlo simulations. We quantify the emergent entropic valence via a potential of mean force and torque. We show that these forces are on the order of a few kBT at intermediate densities below the onset of crystallization. We generalize these shape operations to shape anisotropy dimensions, in analogy with the anisotropy dimensions introduced for enthalpically patchy particles. Our findings demonstrate that entropic patchiness and emergent valence provide a way of engineering directional bonding into nanoparticle systems, whether in the presence or absence of additional, non-entropic forces.[Abstract] [Full Text] [Related] [New Search]