These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of duty cycle on the power-duration relationship: observations and potential mechanisms. Author: Broxterman RM, Ade CJ, Wilcox SL, Schlup SJ, Craig JC, Barstow TJ. Journal: Respir Physiol Neurobiol; 2014 Feb 01; 192():102-11. PubMed ID: 24361503. Abstract: The highest sustainable rate of aerobic metabolism [critical power (CP)] and the finite amount of work that can be performed above CP (W' [curvature constant]) were determined under two muscle contraction duty cycles. Eight men completed at least three constant-power handgrip tests to exhaustion to determine CP and W' for 50% and 20% duty cycles, while brachial artery blood flow (Q̇BA) and deoxygenated-[hemoglobin + myoglobin] (deoxy-[Hb+Mb]) were measured. CP was lower for the 50% duty cycle (3.9 ± 0.9 W) than the 20% duty cycle (5.1 ± 0.8 W; p < 0.001), while W' was not significantly different (50% duty cycle: 452 ± 141 J vs. 20% duty cycle: 432 ± 130 J; p > 0.05). At the same power output, Q̇BA and deoxy-[Hb + Mb] achieved higher end-exercise values for the 20% duty cycle (9.87 ± 1.73 ml·s(-1); 51.7 ± 4.7 μM) than the 50% duty cycle (7.37 ± 1.76 ml·s(-1), p < 0.001; 44.3 ± 2.4 μM, p < 0.03). These findings indicate that blood flow influences CP, but not W'.[Abstract] [Full Text] [Related] [New Search]