These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Redox stability of As(III) on schwertmannite surfaces. Author: Paikaray S, Essilfie-Dughan J, Göttlicher J, Pollok K, Peiffer S. Journal: J Hazard Mater; 2014 Jan 30; 265():208-16. PubMed ID: 24361800. Abstract: As(III)-enriched mine discharge often drains through Fe(III)-mineral abundant land covers which makes the understanding of its fate and redox behaviour extremely important. We therefore conducted batch kinetic and equilibrium studies at pH 3.0±0.05 in anoxic media coupled with spectroscopic and microscopic examinations at variable conditions to understand possible As(III) binding mechanisms and the redox stability of As(III) on schwertmannite, a prominent ferric mineral in acid mine drainage environments. Schwertmannite acted as an efficient scavenger for As(III) compared to goethite at identical sorbent:solute ratios. As K-edge X-ray absorption near-edge structure (XANES) demonstrated partial oxidation of sorbed As(III) to As(V) on both the minerals depending on the Fe(III)/As(III) ratios (goethite acted as a better oxidant than schwertmannite). Sorbed As(III) and As(V) coordinated in a bidentate binuclear binding mechanism with As(III)/As(V)-O and As(III)/As(V)-Fe interatomic distances as 1.78/1.69 and 3.37/3.31Å, respectively. Scanning (SEM-EDX) and transmission (TEM) electron microscopic, and IR spectroscopic measurements revealed the formation of As-containing surface coatings by sorbed As on schwertmannite.[Abstract] [Full Text] [Related] [New Search]