These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preanalytical standardization for reactive oxygen species derived oxysterol analysis in human plasma by liquid chromatography-tandem mass spectrometry.
    Author: Helmschrodt C, Becker S, Thiery J, Ceglarek U.
    Journal: Biochem Biophys Res Commun; 2014 Apr 11; 446(3):726-30. PubMed ID: 24370823.
    Abstract:
    The analysis of the oxysterols 7-keto-, 7-α/β-hydroxy-, 5α,6α-epoxy-, 5β,6β-epoxycholesterol and cholestane-3β,5α,6β-triol derived from reactive oxygen species (ROS) is of interest as biomarkers in the field of atherosclerosis. Preanalytical validation is a crucial point to minimize the susceptibility of oxysterols to in vitro autoxidation. The aim of this study was to standardize a preanalytical protocol for ROS-derived oxysterol analysis by liquid chromatography-tandem mass spectrometry in human plasma. Sample matrices were compared and stability of free oxysterols in whole blood and EDTA-plasma was investigated with regard to short-term storage until sample preparation, freeze-thaw cycles, addition of butylated hydroxytoluene and long-term storage up to 1 year at different temperatures (-20 °C, -80 °C and -130 °C) as well as different storage containers (safe-lock tubes, cryo tubes and straws). Sample preparation prior LC-MS/MS analysis was reduced to a simple concentration and protein precipitation step. Storing EDTA-whole blood for 30 min at room temperature resulted in <25% concentration changes, within acceptable change limits (ACL). In freshly prepared plasma samples, free oxysterols were stable for 90 min stored at 4 °C with concentration changes <23.5% (within ACL). Up to nine freeze-thaw cycles did not affect analyte concentrations (concentration change -8.5% to +5.0%). 7-Ketocholesterol was stable for 2 years stored <-80 °C; concentration changes below 20.5% (within ACL). The remaining oxysterols were stored for a maximum of 2-4 weeks without exceeding ACL. The addition of BHT did not reveal improvement in analyte stability for storage at -80 or -130 °C. We developed a standardized preanalytical protocol for oxysterol analysis based on LC-MS/MS, compared cryobanking conditions for each oxysterol and present data for long-term storage up to 2 years.
    [Abstract] [Full Text] [Related] [New Search]