These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Repair of segmental long bone defect in a rabbit radius nonunion model: comparison of cylindrical porous titanium and hydroxyapatite scaffolds.
    Author: Zhang M, Wang GL, Zhang HF, Hu XD, Shi XY, Li S, Lin W.
    Journal: Artif Organs; 2014 Jun; 38(6):493-502. PubMed ID: 24372398.
    Abstract:
    A segmental long bone defect in a rabbit radius nonunion model was repaired using cylindrical porous titanium (Ti) and hydroxyapatite (HA) scaffolds. Each scaffold was produced using the same method, namely, a slurry foaming method. Repairing ability was characterized using x-radiographic score 12 and 24 weeks postprocedure; failure load of the radius-ulna construct, under three-point bending, 12 weeks postprocedure; and the percentage of newly formed bone within the implant, 12 and 24 weeks after postprocedure. For each of these parameters, the difference in the results when porous Ti scaffold was used compared with when HA scaffolds were used was not significant; both porous scaffolds showed excellent repairing ability. Because the trabecular bone is a porous tissue, the interconnected porous scaffolds have the advantages of natural bone, and vasculature can grow into the porous structure to accelerate the osteoconduction and osteointegration between the implant and bone. The porous Ti scaffold not only enhanced the bone repair process, similar to porous HA scaffolds, but also has superior biomechanical properties. The present results suggest that porous Ti scaffolds may have promise for use in the clinical setting.
    [Abstract] [Full Text] [Related] [New Search]