These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hypoxia selectively disrupts brain microvascular endothelial tight junction complexes through a hypoxia-inducible factor-1 (HIF-1) dependent mechanism. Author: Engelhardt S, Al-Ahmad AJ, Gassmann M, Ogunshola OO. Journal: J Cell Physiol; 2014 Aug; 229(8):1096-105. PubMed ID: 24375098. Abstract: The blood-brain barrier (BBB) constitutes a critical barrier for the maintenance of central nervous system homeostasis. Brain microvascular endothelial cells line the vessel walls and express tight junction (TJ) complexes that restrict paracellular passage across the BBB, thereby fulfilling a crucial role in ensuring brain function. Hypoxia, an impaired O(2) delivery, is known to cause BBB dysfunction but the mechanisms that drive this disruption remain unclear. This study discloses the relevance of the master regulator of the hypoxic response, hypoxia-inducible factor-1 (HIF-1), in hypoxia-induced barrier disruption using the rat brain endothelial cell line RBE4. Hypoxic exposure rapidly induced stabilization of the HIF-1 oxygen-dependent alpha subunit (HIF-1α) concomitantly with BBB impairment and TJ disruption mainly through delocalization and increased tyrosine phosphorylation of TJ proteins. Similar observations were obtained by normoxic stabilization of HIF-1α using CoCl(2), deferoxamine, and dimethyloxalylglycine underlining the involvement of HIF-1 in barrier dysfunction particularly via TJ alterations. In agreement inhibition of HIF-1 stabilization by 2-methoxyestradiol and YC-1 improved barrier function in hypoxic cells. Overall our data suggests that activation of HIF-1-mediated signaling disrupts TJ resulting in increased BBB permeability.[Abstract] [Full Text] [Related] [New Search]