These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Application of pyronin Y(G) in cytochemistry of nucleic acids.
    Author: Darzynkiewicz Z, Kapuscinski J, Traganos F, Crissman HA.
    Journal: Cytometry; 1987 Mar; 8(2):138-45. PubMed ID: 2438101.
    Abstract:
    Chinese hamster ovary (CHO) cells or isolated nuclei were stained with pyronin Y(PY) and analyzed by absorption or fluorescence microscopy, as well as by flow cytometry. Specificity of the staining reaction was assayed by testing sensitivity of the stainable material to RNase or DNase. The colored complexes detected by light absorption in fixed cells stained with PY are nonfluorescent and are most likely the products of condensation of single-stranded (ss) RNA by PY; the poly(rA) and poly(rA,rG) are the most sensitive to condensation. The products of PY interaction with double-stranded (ds) nucleic acids are fluorescent and can be detected in cells by cytofluorometry. PY used alone stains both DNA and RNA, and the staining capabilities of these nucleic acids vary depending upon the PY concentration at equilibrium; at a concentration above 330 microM, the RNA stainability decreases, perhaps due to its denaturation and condensation caused by the dye. In the presence of Hoechst 33342, PY can specifically stain RNA in fixed cells or isolated cell nuclei. Because only complexes of PY with ds RNA are fluorescent, this dye can be used as a probe of RNA conformation, e.g., to monitor denaturation of RNA in situ. The RNA stainability of mitotic cells is about 25% lower than that of cells in G2 phase, which indicates that during mitosis proportionately less cellular RNA is in the ds conformation. The advantages and limitations of the two cytochemical methods for DNA/RNA detection, one based on the use of Hoechst 33342 and PY, and another employing the metachromatic properties of acridine orange, are compared.
    [Abstract] [Full Text] [Related] [New Search]