These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuronal phenotype dependency of agonist-induced internalization of the 5-HT(1A) serotonin receptor.
    Author: Bouaziz E, Emerit MB, Vodjdani G, Gautheron V, Hamon M, Darmon M, Masson J.
    Journal: J Neurosci; 2014 Jan 01; 34(1):282-94. PubMed ID: 24381289.
    Abstract:
    Selective serotonin reuptake inhibitors (SSRI) are aimed at increasing brain 5-HT tone; however, this expected effect has a slow onset after starting SSRI treatment because of initial activation of 5-HT(1A) autoreceptor-mediated negative feedback of 5-HT release. After chronic SSRI treatment, 5-HT(1A) autoreceptors desensitize, which allows 5-HT tone elevation. Because 5-HT(1A) receptor (5-HT(1A)R) internalization has been proposed as a possible mechanism underlying 5-HT(1A) autoreceptor desensitization, we examined whether this receptor could internalize under well controlled in vitro conditions in the LLC-CPK1 cell line and in raphe or hippocampal neurons from rat embryos. To this goal, cells were transfected with recombinant lentiviral vectors encoding N-terminal tagged 5-HT(1A)R, and exposed to various pharmacological conditions. Constitutive endocytosis and plasma membrane recycling of tagged-5-HT(1A)R was observed in LLC-PK1 cells as well as in neurons. Acute exposure (for 1 h) to the full 5-HT(1A)R agonists, 5-HT and 5-carboxamido-tryptamine, but not the partial agonist 8-OH-DPAT, triggered internalization of tagged 5-HT(1A)R in serotonergic neurons only. In contrast, sustained exposure (for 24 h) to all agonists induced tagged-5-HT(1A)R endocytosis in raphe serotonergic neurons and a portion of hippocampal neurons, but not LLC-PK1 cells and partial agonist displayed an effect only in serotonergic neurons. In all cases, agonist-induced tagged 5-HT(1A)R endocytosis was prevented by the 5-HT(1A)R antagonist, WAY-100635, which was inactive on its own. These data showed that agonist-induced 5-HT(1A)R internalization does exist in neurons and depends on agonist efficacy and neuronal phenotype. Its differential occurrence in serotonergic neurons supports the idea that 5-HT(1A)R internalization might underlie 5-HT(1A) autoreceptor desensitization under SSRI antidepressant therapy.
    [Abstract] [Full Text] [Related] [New Search]