These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Condurango glycoside-rich components stimulate DNA damage-induced cell cycle arrest and ROS-mediated caspase-3 dependent apoptosis through inhibition of cell-proliferation in lung cancer, in vitro and in vivo.
    Author: Sikdar S, Mukherjee A, Ghosh S, Khuda-Bukhsh AR.
    Journal: Environ Toxicol Pharmacol; 2014 Jan; 37(1):300-14. PubMed ID: 24384279.
    Abstract:
    Chemotherapeutic potential of Condurango glycoside-rich components (CGS) was evaluated in NSCLC, in vitro and in BaP-intoxicated rats, in vivo. NSCLC cells were treated with different concentrations of CGS to test their effect on cell viability. Cellular morphology, DNA-damage, AnnexinV-FITC/PI, cell cycle regulation, ROS-accumulation, MMP, and expressions of related signalling genes were critically analysed. 0.22 μg/μl CGS (IC₅₀ dose at 24 h) was selected for the study. CGS-induced apoptosis via DNA damage was evidenced by DNA-ladder formation, increase of AnnexinV-positive cells, cell cycle arrest at subG0/G1 and differential expressions of apoptotic genes. ROS-elevation and MMP-depolarization with significant caspase-3 activation might lead to apoptotic cell death. Anti-proliferative activity was confirmed by EGFR-expression modulation. ROS accumulation and DNA-nick formation with tissue damage-repair activity after post-cancerous CGS treatment, in vivo, supported the in vitro findings. Overall results advocate considerable apoptosis-inducing potential of CGS against NSCLC, validating its use against lung cancer by CAM practitioners.
    [Abstract] [Full Text] [Related] [New Search]