These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of iron oxide nanoparticle and microwave hyperthermia alone or combined with cisplatinum in murine breast tumors.
    Author: Petryk AA, Stigliano RV, Giustini AJ, Gottesman RE, Trembly BS, Kaufman PA, Hoopes PJ.
    Journal: Proc SPIE Int Soc Opt Eng; 2011 Feb 22; 7901():. PubMed ID: 24386533.
    Abstract:
    UNLABELLED: Surgery, radiation and chemotherapy are currently the most commonly used cancer therapies. Hyperthermia has been shown to work effectively with radiation and chemotherapy cancer treatments. The major obstacle faced by previous hyperthermia techniques has been the inability to deliver heat to the tumor in a precise manner. The ability to deliver cytotoxic hyperthermia to tumors (from within individual cells) via iron oxide magnetic nanoparticles (mNP) is a promising new technology that has the ability to greatly improve the therapeutic ratio of hyperthermia as an individual modality and as an adjuvant therapy in combination with other modalities. Although the parameters have yet to be conclusively defined, preliminary data suggests mNP hyperthermia can achieve greater cytotoxicity (in vitro) than conventional water bath hyperthermia methods. At this time, our theory is that intracellular nanoparticle heating is more effective in achieving the combined effect than extracellular heating techniques.1 However, understanding the importance of mNP association and uptake is critical in understanding the potential novelty of the heating modality. Our preliminary data suggests that the mNP heating technique, which did not provide time for particle uptake by the cells, resulted in similar efficacy to microwave hyperthermia. mNP hyperthermia/cisplatinum results have shown a tumor growth delay greater than either modality alone at comparable doses. METHODS: One hour before nanoparticle hyperthermia, CDDP chemotherapy (5mg/kg of body mass) was delivered intraperitoneally (IP). Iron oxide nanoparticles, 7.5mg of iron per gram of tumor, were injected into MTGB flank tumors in female C3H mice immediately before activation. A 170 KHz, 400-450 Oe alternating magnetic field (AMF) was used to induce particle heating. A comparison of nanoparticle induced hyperthermia to non-nanoparticle induced hyperthermia was also made using a 915 MHz microwave generator. Treatment duration was determined by the use of the cumulative equivalent minutes (CEM) algorithm. A CEM 60 was selected as the thermal dose for all experimental groups. RESULTS: 1) Preliminary mNP hyperthermia/cisplatinum results have shown a tumor growth delay greater than either modality alone at comparable doses. 2) mNP hyperthermia delivered 10 minutes post mNP injection and microwave hyperthermia, with the same thermal dose, demonstrate similar treatment efficacy.
    [Abstract] [Full Text] [Related] [New Search]