These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cellulose nanowhiskers and fiber alignment greatly improve mechanical properties of electrospun prolamin protein fibers.
    Author: Wang Y, Chen L.
    Journal: ACS Appl Mater Interfaces; 2014 Feb 12; 6(3):1709-18. PubMed ID: 24387200.
    Abstract:
    Electrospun fibers from natural polymers must possess appropriate mechanical properties if they are to be functional in numerous applications. In this research, two convenient physical approaches were applied to reinforce the assembled hordein/zein electrospun nanofabrics: incorporation of surface-modified cellulose nanowhiskers (SCN) and fiber alignment. The mechanical properties and stability of the modified fibers were tested in relation to fiber morphology and structure as characterized by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy. SCN modified by quaternary ammonium salt were well-dispersed in hordein/zein networks, leading to fibers with significantly improved mechanical properties and water resistance. With the addition of 3 wt % SCN, the tensile strength and Young's modulus of hordein/zein fibers increased from 4.36 ± 0.29 to 7.79 ± 0.36 MPa and from 195.80 ± 13.02 to 396.64 ± 18.33 MPa, respectively, and the elongation at break was retained because of the formation of a percolating network of SCN. The alignment of electrospun fibers strengthened the hordein/zein nanofabrics in both tangential and normal directions to 17.26 ± 1.41 and 14.02 ± 0.74 MPa, respectively, by not only altering the piling up pattern, but also by promoting phase separation and improved interactions. When applying both of the reinforcing methods, the tensile strength of hordein/zein fibers was further enhanced to 21.99 ± 1.19 MPa, stronger than that of cancellous bones (5-10 MPa). All the reinforced fibers exhibited a reduced burst effect in phosphate-buffered saline (PBS) while releasing the incorporated bioactive molecule in a controlled manner. These physically reinforced prolamin protein fibers possessed significantly improved mechanical properties and may have potential to be used as tissue engineering scaffold materials or natural delivery systems for biomedical applications.
    [Abstract] [Full Text] [Related] [New Search]